Authors - Bitan Pratihar Abstract - We, human-beings, have two different forms of memory, namely pulling memory and pushing memory (also known as working memory). A pure pulling memory pulls a person towards itself, and consequently, he/she spends some significant amount of time on memorizing the incident but does not gain anything significant in his/her decision making directly. On the other hand, a pure pushing memory pushes a human-being to take some decisions, and thus, it may have direct influence on his/her learning. However, neither pure pulling memory nor pure pushing memory alone may be beneficial to effective learning of human brain. A proper combination of pulling and pushing memories may be required to ensure a significant effect of memory on learning of neural networks. The novelty of this study lies with the fact of formulating it as an optimization problem and solving the same using a recently proposed nature-inspired intelligent optimization tool. The effectiveness of this novel idea of correlating the combined form of memory with learning of neural networks has been demonstrated on two well-known data sets. This combined form of memories is found to have a significant influence on learning of neural networks, and this proposed approach may have the potential to solve the well-known memory loss problem of neural networks.