Loading…
Friday January 31, 2025 12:15pm - 2:15pm IST

Authors - Shilpa M Katikar, Vikas B Maral, Nagaraju Bogiri, Vilas D Ghonge, Pawan S Malik, Suyash B Karkhele
Abstract - Effective forecasting and modeling in food demand supply chains are critical to minimizing waste, reducing costs, and ensuring product availability. This paper explores a comprehensive approach to forecasting food demand by leveraging regression-based models for analysis. We investigate how various machine learning regressors can predict food demand more accurately by examining key supply chain factors such as seasonal trends, price fluctuations, and consumer behavior. The study implements and compares multiple regressors to assess their performance in predicting demand. Metrics Evaluation is done by predicting various models which are Ensemble Learning Models and Neural Network Models to calculate the model’s accuracy. By doing prediction, we identified that Gradient Boosting and XGBoost have overall good accuracy in forecasting and it has provided optimized solutions in the supply food chain. This research mainly focuses on using the best modeling techniques which will help the end users to make proper decisions and bring efficiency in food demand management.
Paper Presenter
Friday January 31, 2025 12:15pm - 2:15pm IST
Virtual Room D Pune, India

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link