Authors - Rajeshree Khande, Sachin Naik, Akshay Tayade, Amar Kale, Kunal Phalke Abstract - The authors propose for the LSTM-XGBoost model for portfolio optimization as well as stock price prediction. The model has incorporated the benefits derived from XGBoost, a gradient-boosting algorithm that enhances the ability of a model to predict structured and improved data, and Long Short-Term Memory (LSTM) networks, which excel at characterizing time-series data based on temporal relationships. The XGBoost model takes advantage of the LSTM model by utilizing the anticipated outputs it makes for improving the precision and overall efficiency of the model while the LSTM model is designed to work with ordered data peculiar to stock markets specifically on patterns and trends over time. In the study authors employ this type of hybrid to determine variables such as volatility and the moving average of historical stock price index of NIFTY50. The authors have obtained total model accuracy of 98.33%. Authors also use the Sharpe ratio to maintain an optimal portfolio because it shows investors the optimal ratio of expected stock returns. This research contributes to enhancing financial forecasting by integrating deep learning and machine learning techniques, ultimately offering the formulation of a new risk avert portfolio as well as stock price prediction.